CELLULAR SENTINELS
Senior Design

Jessica Fernandes

Leonard Giannone

Carrie Johnston

Ryan Savino

TABLE OF CONTENTS
1 Introduction

1.1 Problem………………………………………………………………3

1.2 System Requirements……………………………………….………3
1.3 High Level Description………………………………………..…..…4
1.4 Design Performance………………………………...………...……..5
2 Detailed Project Description

2.1 System Theory of Operation………………………………...………6
2.2 System Block Diagram…………………………………………….....6
2.3 Cellular Communication Subsystem: Detailed Operation…
….….6

2.3.1 Overview……………………………………………….….6
2.3.2 Function and Schematic………………………………..…7

2.3.3 Testing………………………………………………….…9
2.4 Information Processing Subsystem: Detailed Operation……….....10

2.4.1 Overview……………………………………...…………..10
2.4.2 Function and Schematic………………………………….10

2.4.3 Testing…………………………………………………….12
2.5 External Devices Subsystem: Detailed Operation………...……....12

2.5.1 Overview…………………………………………...……..12
2.5.2 Function and Schematic………………………………….13
2.5.3 Testing…………………………………………………….15
3 System Integration Testing
3.1 Testing the Integrated Subsystems…………………………...……16

3.2 Meeting Design Requirements………………………………..…….17

4 Users Manual

4.1 Installation……………………………………………………….…..18

4.2 Setup………………………………………………………………...18

4.3 Proper Working Conditions.…………… ……………………….…19

4.4 Troubleshooting………………………………………...………….19
5
Conclusions

5.1 Final Evaluation ……………………………………………………..20
5.1 Future Enhancements ………………………………………...…….20
6 Appendices
Appendix 1: Hardware Schematic ………………………….…………..21
Appendix 2: Board ……………………………….……………………..22
Appendix 3: Software Listing…………………………………………..22
Appendix 5: Relevant Components and Datasheets……………...…..22
Appendix 5: Final Code ………………………………………………...23
INTRODUCTION
The proliferation of electronic devices in today's society, specifically cellular phones and communication accessories, has introduced a new potential for mobile security and home safety. Our team is designing a communication system that monitors security threats and notifies consumers directly through their mobile device, eliminating any middleman service organization. This technology will provide the user with the capability of remotely securing their home at the touch of a button and can incorporate an endless range of applications based on the user’s needs. Our system will allow users to communicate with their door and window locks.

1.1 Problem

The goal of our project is to create a cellular controlled home monitoring system that has the capability of remotely unlocking a door and closing and opening a window. The user will be able to manipulate these actions via SMS (Short Message Service) text messages that will be sent and received on their cell phone. The user can send SMS text messages to the system that can lock the door, and open or close the window. Upon receiving these commands, the system will perform the action requested in the SMS text message. After the action is performed, the user will receive a SMS message confirming the success of the command.

1.2 System Requirements
To achieve this goal, we will be implementing a system that is composed of three main subsystems: a cellular connection, an information processing segment, and external devices.
The cellular connection is the system that serves as the interface between the user and the device. The requirements of the system include:

· Establishing a system in which the modem has a consistent connection to a cellular network

· Designing and implementing a system with a component that can and does receive text messages

· Including in the design the ability for the component to send a predetermined text message

The Information Processing system is the brain of the overall project. I will perform the following actions.

· Accept text messages received by the cellular connection

· Interpret the received text message to performing the given command

· Respond to the command by setting the outputs of the system to do the requested function.

· Send commands to the cellular connection that enables it to send a text message to a phone.

· A security system is also necessary to ensure that not just anyone can unlock the door. A filter of acceptable phone numbers that can send commands will have to be implemented.

· The security system should have the option of adding addition phone numbers with the use of a password.

The external devices are the portion of the project where the actual action is being preformed. This system will include:

· A motor that can rotate in two directions

· Circuitry that allows for the direction of the motor to be controlled through the information processing system

· Circuitry that turns the motor on and off at the command of the information processing system

· A lock that can be unlocked electronically

· Circuitry that allows for a lock to be unlocked based on a signal form the information processing system

1.3 High Level Description

The three main subsystems work together in this project to produce a system that can accept a text message from a cell phone. This text should be a command for an action of either unlocking a lock or opening/closing a window. The system will interpret the message and perform the desired action. The actions are brought about through a series of steps that are specialized into three subsystems.

The cellular connection is responsible for accepting and sending text messages. The component that we use for the cellular connection is the Telit GM862 Cellular Quad Band Module. It is employs a modem that utilizes a connection to the Global System for Mobile communications (GSM). The GM862’s actions are controlled with the use of AT
commands. These commands are sent through the microcontroller to the GM862. The microcontroller can read the texts that the GM862 receives.

The information processing subsection is responsible for taking the texts from the GM862, interpreting them, and sending the required signals to perform the requested action. The microcontroller receives an unread text message stored in the latest memory location of the microcontroller into its rcreg register. It then parses the message to obtain the required information it contains which could include: the phone number it is being set by, the command, and the password. Once the microcontroller has determined that the command is coming from a secure cell phone, it sets its output pins to the settings required to perform the desired function.

The external devices are the actual motor and lock that perform the functions commanded in a text message. Logic high or low levels sent from the microcontroller corresponding to actions on the devices. The motor which is in the default lock state can be commanded to be opened and the motor can be set to turn in a certain direction and turned on or off.
1.4 Design Performance
Our outcome of our design met our initial design expectations. We found that we had to make modifications to our design along the way in order to better fulfill the requirements. These included changing the way the window and door mechanisms were operated. Initially, we anticipated using a solenoid to lock the door and a servo motor to close the window. However, these mechanisms had to be redesigned in order to perform the actions in a more logical and efficient manner. We incurred another major setback in our cellular communication. We were disappointed by the reliability of the modem which was used to receive and send SMS text messages. The GM862-Quad was very temperamental with its network connections. In some instances we were able to register to the AT&T network and in others, our registration failed. In this respect, we were dissatisfied by the consistency and were unable to attain the same results each time our system was tested.

DETAILED PROJECT DESCRIPTION
2.1 System Theory of Operations

The GSM modem has the capability of sending and receiving SMS text messages. The text messages sent by the user to the GSM modem will be in a specific format that can check the status of the door or window or can accordingly lock or close these two mechanisms upon receiving a command. When the data is received by the GSM modem, it will be read by the microcontroller. The programmed microcontroller will parse the data that is received and thereby perform the action that is requested.
2.2 System Block diagram
[image: image11.png]Lock

=
T@

Relay

[J=a]

JpictsF23.

100 OHM

&

D

o1y
1UF

r

[image: image12.jpg]

[image: image13.jpg]MIC2919-5 JP_5VREG

D_5YREG1 o B T
THagod YCAP SVREGE, 9
&i ey M 300
CAP_5VREGEL g 22uF
== =} 2

10uF

4] Tul
GHD

9
B
L&
aei]
9
)

- MIC529-28
v D_28VREG 4 1
v L N ouT —YorrrEvRER - N out
DN 2
= = caroeviEag | N o 22uF SHON' SENSE
m A 2 2
B O e
10UF & 28v X AE 2EVREG
i 1 n > 1 g =
2 3.8 Voltage Reguiator o
2N o B o
= g
oo hE oo iz
o oo 35
o
JE_UCONTRI -
%
5 d ~
T a &
78 Q10
@ kS
o o = 4
o o 2 o
3 ER -
RADIAND RETIKBIZPGD 4+ L _d
RG]
RAVANT REBIKBIZPGC %
< 2 H oo
RAZIANZVREF-OVREF Resikaipon 2 = o 4 o
e H g 3 &
RASANIVREF+ O|® meumnikan |22 =
5 B
RAATOCKICH OUT O reamaccrr [24 5 {
RASIAN4/SSILVDINICZOUT RazanainTz =
| e — —
= - RBOANT2INT MOTOR_TRANISISTORZ P81 ® P32
@ 20 b
& e & Po4 Pss |
=S 8 2
S¢——F2 vesing @ i a5
& i i1 RCTIRADT MOTOR2 4+ L L 4
0412 vsseints) S
@ o RCBMICK
= D
ROSISD0
o
o g RCA4/SDISDA
. 2| osciicLrirar E1 12— i 55 e
10 | ogcacLkomas gl= i ® i =] £ o
<} RC2CCPIPIA = g
1UF
[RC1/TI08ICCP2) I
MCLRAPPIRES § RCOT 080T CKI
=
1529 = A FJ_
; u
o A TS -8 o
i RGaw - b N R ol 5] g
: R GM52 GMEBIGND v 504 i
| - 1‘
ol X vBATT GohD
w2 3 vestr 22222222 GND LOCK_TRANSISTOR
o GNDIADG
1 vearr CHARGE 100
o @ JECH EAR_MT- A
o T EAR_MT+ co LOCKRELAY
: T ot e
R_GSM3 g MIC HE+ MIC_T-
L ONIOFF RE [eita)
10K 2 SIMIO C103MD
GlD = PIWRMON siCe z
RESET SINRST o=
ERet RES SIMOLK £3
: NN GPO2UDR e
Z ci6iCTS C125RING u
. GPIt GPIOBIPDITICAM_ON
JpBENERER2 10705k GPIOUPD[IJCAM_RST Glo
2 g EUML T OPS 105D
= CI04IRID GPIO10FD(
o STAT_LED GPIOIIIPDL3]
s EUNT RGP P01 2D
(2 i C108IDTR GPIO13/PDIS]
Cl0sRTS GRIOIPDIEJCAM_SCL
GPIOAICSDAICAM _SDA GPIOSICAM_RDYIRFTANON
[eite) GPIOBIALARMIFDIT] GPIOTIBUZZERICAN_PIWR_ON
JPR5232
T
b
by
On” 2 [_LCAP Max2322
b= CAP_|
Ut TuF
CAP_MAX232.1-3 1
otr o)
T i|e 0 Glo
c w |Le
[— T
AP T ¢
B " TuF GND
TuF = % B2
G Tiour |14 e i }—DZD
Jad) K [EPTY mour | Sle e 0
L ror 20 R 2 H
2] roour & Ran [£ <
MAZI25ETE oL
- 2
Glo
Glo
JP-RS52

1o

S5y

[image: image1]
2.3 Cellular Communication Subsystem: Detailed Operation

2.3.1 Overview

The fist major subsystem is the cellular connection. It is separated into two major parts: the cell phone of the user wishing to access the system and the GMS modem / SMS receiver. The purpose of the GMS modem / SMS component is to receive text messages from a cell phone and to send a text message back to the cell phone. The cell phone will interface with the SMS component via text messaging and will serve as a two way input/output connection.

2.3.2 Function and Schematic
The cellular communication system is the interface between the user and the device. The user can communicate with the system through SMS text messaging. The device that we are using to receive this message is the GM862 Quad Band Module which is a GSM modem that is capable of both sending and receiving text messages.
The GM862 required a separate SIM card that would provide the modem with service provider information. For the purpose of this project got a pay-as-you go texting plan from AT&T. We decided to use this route because we would not be sending a great deal of text messages and were only working on this project for a few months. We also decided to use AT&T as our service provider because the GM862 offered specific AT commands to set the module up for AT&T network.

The GM862 is controlled by AT commands. AT commands are simply strings in a specific format that correspond to complete commands for operations. Below is a list of AT commands that were used in the project and their function.

	Command
	Purpose

	AT
	test connection of HyperTerminal with GM862

	AT#BND =[<band>]
	selects the current and range <band>

	AT#AUTOBND=[<value>]
	enables/disables the auto band selection at power on

	AT+IPR=<rate>
	sets the speed of the serial port

	AT+IPR?
	checks the serial port speed setting

	AT+IPR=?
	checks the serial port speed range

	AT#SELINT?
	checks the AT interface style

	AT#SELINT=<x>
	sets the selint to be x

	AT+CPIN?
	checks the SIM presence and status

	AT+CREG?
	checks that it is registered with the network

	AT+CSQ
	checks the signal strength

	AT+CNUM
	generates the phone number associated with the SIM card

	AT#MONI
	states the networks found and what connected to

	AT+COPS=?
	checks the network connected to and status

	AT+CSCS
	sets character set used for text messages

	AT+CMGF=1
	sets GSM to text mode

	AT+CMGS="+1<NUMBER>"
	sends message to phone number provided

	AT+CPMS
	Decides onboard or SIM memory. if set to SIM you can read your messages

	AT+CMGL
	reads messages

To send or receive a text message the following routine must be enabled.

[image: image2.png]‘Send AT initialization commands
Check that connection is
estabiished with a network
| ves | v
K e ad Wait for command
message in unrea from microcontroller

Message recelved/ \Se;rd message

Read last message
received and send ms;“es'ed
to microcontroller

register

The connection of the GM862 to the network is established by first setting a series of initialization AT commands. The GM862 must be set to the correct band range which for American cellular phones is 850/1900 Hz. The serial port rate had to be set to be the same as the baud rate so when the GM862 is connected to the microcontroller the strings are read correctly. The modem also needed to be set to text mode as part of the initialization process.

Once the GM862 is initialized and a connection is established, commands to either send or receive a text message can be entered.

To send a message:

 printf("AT+CMGS=+1<number>\r\n"); // send a message to number

 delay_s(10);

 printf("<message>"); // text to send

 delay_s(10);

 put_ctrl_z(); // established the end of the message

 delay_s(10);

 printf("\r\n");

To receive a message:

 printf("AT+CPMS=\"SM\"\r\n"); //sets to sim memory to read messages

 delay_s(3);

 printf("AT+CMGL=\"rec unread\"\r\n"); //displays all stored messages

Powering the GM862

The GM8632 requires a voltage of 3.8V. The following is the voltage regulator circuit used to maintain a constant voltage of 3.8V. It used takes the voltage from our DC-IN and converts it to the necessary voltage.

[image: image3.png]1 ohm

[out

-
00uF

P i
A=
GND

3
¥ 38 Voltage Regulator
cfo

“h

2.8V is also needed for the SIM power. The 2.8V regulator circuit can be seen in the information processing section.

2.3.3 Testing

Testing the cellular connection was accomplished through the HyperTerminal with the use of a MAX232 serial connection. Using the MAX232 we were able to type to the GSM directly through the HyperTerminal and the responses of the GSM were printed in the HyperTerminal as well. This served as our main form of testing. Typical test procedures involved establishing that the GM862 was connected to the HyperTerminal and the modem was on by using the AT command “AT.” Next, we checked if a network was found and if the modem was able to connect to the network. Once connected, the signal strength could be measured. We found that when we were working in the electronics lab, we were rarely able to register to a network, and when we were able to register the signal strength was not very good. After establishing a strong network connection, AT commands were used to test sending and receiving text messages. At any point we could recheck that all of our initial conditions were set correctly with this same interface through the computer. While connected to the HyperTerminal we were initially not able to interface with the microcontroller, so we used a “status LED” to ensure that we were connected to a network. This LED was connected to the to a pin on the GM862 and would blink quickly if it was searching for a network and blink slowly at a rate of about once every three seconds when it was registered to a network.

Below is the schematic of the GM862 and the MAX232 used for serial connections:

[image: image4.png]R_GEMI -
E Ee Hh cuszono o
foge 3 H B
L3] = G et 2
&] 2 swmnon s (2 z
ro— 2 e Shet Bt
P I s N S gw
g —] Sinen et o o
el e Shorieeh
T T N i
T B Sintll
P £ S 3
Fo o] S s emethiathrmion
o O | Conceiamnnnt] crRREER R o
sy
i oo vz
w1 ur
1 B
. g wiel o
- M e
B h N - TuF BNy
T | —= = 2

us;j:a
o

s

_ T
o

For the GM862 to be connected to the MAX232 and to see the response in the hyperterminal T1in (pin 11) of the MAX232 is connected to RX-O of the GM862 and R1out (pin 12) of the MAX232 is connected to TX-I on the GM862.

2.4 Information Processing Subsystem: Detailed Operation

2.4.1 Overview

The in information processing subsystem consists of a board with microcontroller and the GM862-QUAD modem. While the modem has the ability to send and receive SMS messages, the microcontroller is responsible for interpreting the messages and activates the appropriate mechanisms.
2.4.2 Function and Schematic

The microcontroller works with the information given to it from the GM862 to process the information and work as the control center of the overall system. A flow chart of the software functions can be seen below.

[image: image5.png]

Once the initial conditions are set, the string containing the text information from the GM862 is received by microcontroller. The microcontroller can distinguish if the message is from a secure of unsecure source based on whether or not the number that it is received by is one of the two secure numbers that can be stored within the microcontroller. If the message is from a secure source and it is a command that is given, the microcontroller sets the output pins high or low pertaining to what is needed for the action requested. If a password is given, the microcontroller continues to the next part of the code that allows for a new number to be added. If the message had come from an unsecure source, a password is require to give a command. If the password is correct, the user has the option of adding a new number to the secure numbers or giving a command which is perform as stated previously.

Below is the circuit used to connect the microcontroller to the GM862.
[image: image6.png]

2.4.3 Testing
In order to test the information processing system, an iterative process of gradually changing steps show in the flow chart to ensure that the each step of the process was working correctly was employed. We used print out to the hyperterminal to see how the program was implementing our software and also used LED connected to output ports on the microcontroller to determine if the pins were set high at the correct time.
2.5 External Devices Subsystem: Detailed Operation

2.5.1 Overview

The third subsystem includes the two mechanisms whose functionality is controlled by the microcontroller. The two include the door lock and the motor to close the window. Each of the circuits that control these mechanisms are circuited on the board and are connected to the microcontroller. The commands in the program on the microcontroller activate these two devices based on the command that is sent in the SMS text.
2.5.2 Functions and Schematics

Lock

The lock used in our design is an electric strike locking mechanism which has a default setting of being in the locked position. It consists of a solenoid which turns on when power is applied and unlocks the lock. Our choice of locking mechanism was based off of available materials and simplicity of design. Our original design of using a push/pull solenoid whose plunger would serve as the lock itself would not have been practical. The plunger of the budgeted solenoid would not have been long enough or sturdy enough to serve as a deadbolt type lock. Furthermore, the sensor to tell if the lock was open or closed would have been unnecessarily complicated when the current that supplied the solenoid could have just been measured. The use of a push/pull solenoid would have resulted in a great deal of power usage. A current would have to be continuously supplied to the solenoid for it to be in the open position. It is also important to take into account the fact that solenoids can only be on for a short period of time or they will overheat. For this purpose the lock is normally in the locked position and only in the open position for a short period of time when it is given the command to be open. If the solenoid could be set to be on for a significant amount of time or if the on position of the solenoid was chosen to be the locked position, the solenoid would not be able to function. The electric strike was given to us from the Notre Dame locksmith.

To turn the lock on at the desired time a relay is used as seen in the circuit below.

When the microcontroller reads the command to turn the lock on it sends a logic high. When the relay receives the high voltage, it closes a switch which allows power to flow across the new connection and this supplies the adequate voltage and current to turn the lock into the open position.

Motor

The motor for this project needed to be able to turn in two different directions to act as opening the window and closing the window. Though we are not actually demonstrating the opening or closing of a window, turning a motor on in the correct direction that has an adequate amount of torque to open a window serves to show that opening a window would be possible. We were provided a motor that would meet such specifications from Professor Schafer.

The circuit blow was used to turn the motor on in the desired direction.

[image: image7.png]Motor

pic1sLr0

100 ohm

Relay

S

1
11

o

pic1sLr0

100 OHM

o1y
1UF

g

This circuit consists of two relays that are key to its two main functions. The larger relay is a double pull, double throw relay which is responsible for setting the motor in the correct direction. When this relay receives a logic high signal from the microcontroller, it sets the motor to rotate in the clockwise direction (opening the window). When the relay receives a logic low signal from the microcontroller it sets the motor to rotate in the counterclockwise direction (closing the window). This setting of the motor is for a specific direction is accomplished through the switching in the relay. There are two switches which control what the leads of the motor is connected to. By switching the direction of the leads, the direction of rotation is reversed. When the relay is sent a logic high, the switches align so that the positive lead of the motor is connected to 7.8V and the negative lead of the motor is connected to ground. When the relay is sent a logic low, the switches align so that the positive lead of the motor is connected to ground and the negative lead of the motor is connected to 7.8V, which results in the motor rotating in the opposite direction.

The second relay is used to turn on the motor and has the works in the same manner as the relay used in the lock circuit. Its purpose is to actually complete the connection to the power. When this relay receives a logic high signal, it connects power to the circuit with the other relay so that the motor can actually turn on. When it receives a logic low signal, the switch is open and no voltage is supplied to the motor regardless of the direction that the motor is set with using the other relay.

5V Regulator

In the external devices subsystem, we use relays that require 5V to turn on. The schematic below shows how we achieved this voltage.

[image: image8.png]JP_SVREG

MIC2918-5

lag+

10uF

o

o

In our 5V – voltage regular circuit we used an MIC5219-5.0BMM voltage regulator. This is capable of taking our DC-IN voltage which is about 7V and outputs a fixed voltage of 5V.

Powering the Motor and Lock

To turn our lock on, we required a voltage of 12V and current of 3A which are not found on our board. Similarly, we required 7.8V and 2A to turn the motor on. These values were achieved by connecting the power from an outlet to a transformer which outputted the desired voltages needed for the motor and the lock.
2.5.3 Testing

Testing of this individual subsystem was accomplished through first testing that desired voltage and current for the lock and the motor. The motor was also tested to ensure that a reversing the leads of the motor would result in the motor turning in the reverse direction. Next, the circuit was tested by setting the pin controlling the given device to stay high and testing the relay. Observations were then taken to determine that the output of the relay would supply adequate voltage and current while the relay was on. The motor and the lock were then connected to their respective relays to test that they would actually turn on and off according to the settings of the corresponding pin on the microcontroller. For the motor directional circuit, the voltages output by the relay were observed as the microcontroller sent the relay alternating logic high and logic low signals. When it was determined that the switching of both relays worked as expected and delivered the correct output voltages the motor was connected.

While testing the motor is was observed that the motor will turn on at lower voltages than 7.8V. The speed of the motor is proportional to its supply voltage.
SYSTEM INTEGRATION TESTING
Integrated system testing included combining the three main subsystems to accomplish the goal of being able to control a lock and motor through text messaging on a cell phone. This was first done by testing the two subsystems together and then combining the entire project.

3.1 Cellular Connection and Information Processing

The major design difficulties encountered in this project involved incorporating the cellular connection with the information processing system which involved controlling the GM862 through the microcontroller. To test that this could be done correctly, we first added a voltage follower circuit onto the microcontroller, so we would be able to see the response of the microcontroller to the incoming message from the GM862 because we had been having problem connecting the GM862 to the microcontroller and to the HyperTerminal at the same time. It was originally thought that this could not be done. We were able to see a response, however we soon discovered that if we connected the microcontroller and the GM862 to the HyperTerminal we could write AT commands to the microcontroller and see a response. Through this testing method we discovered that though a string was being sent to the microcontroller, the microcontroller was only receiving the first two letters. This resulted because the letters were filling the RC register of the microcontroller and were not being deleted right away. To fix this problem a statement was implemented in our code to clear the buffer after each use. We continued to use the HyperTerminal as our main form of communication of our testing method. As we changed the program used to receive and send text messages, we could use AT commands to see the result in the HyperTerminal to determine if the microcontroller was receiving the message that we intended it to.

Information Processing and External Devices

The integration of the information processing system to the motor and the lock was established with the relay circuit. This circuit was used to accept a 2.8V signal from the microcontroller to signal the turning on of the relay and thus the motor. In order to test the integration of these subsystems, a program was written to set the outputs connected to the lock and motor high and low. This enabled us to show that given the correct commands from the microcontroller, the external devices could react in the desired way. Conversely, the status of the motor and the lock can be checked by reading the logic level of the pins that are connected to the microcontroller because the pin level corresponds to a given status of the device.

3.2 Design Requirements

The testing does show that each of the subsystems does work individually. The integration of the information processing system and the external devices works because the devices can be manipulated through the microcontroller. The integration of the communication system and the information processing system is capable of working. However, the entire system is not fully working correctly because we are having issues with our GM862 registering to a network at the time of complete system integration. It should be noted that this step which we are not able to show at the time of completion of the project was in working order during our first design review. During the first design review, we showed the cellular connection working by sending a text to the GM862 which could then be read through the HyperTerminal by using a given set of AT command to show the unread messages. Also, it was shown that the GM862 could send a text. This was shown by programming the microcontroller with a program that sends the correct AT commands to the receive port of the GM862. Then, the GM862 successfully sent a text that was the same as the message in the program. Through testing with a SIM card that contained unread text messages, we are able to show that the microcontroller is able to retrieve a text message that the GM862 receives. This was shown by putting the SIM card we are using in the GM862 into another cell phone and sending it a text message. The SIM card was then replaced into the GM862 and the microcontroller retrieved the message. Once the message was obtained by the microcontroller, the microcontroller was able to parse the message and perform the given action that was requested in the text.

Through these tests, it was determined that although the system is not in full operation, it has the potential to be. The only problem that we are faced with at the conclusion of the project is registering the SIM card to a network while it is in the GM862. This task was preformed previously so it is possible. The other tasks that are required to be preformed by the project beyond this step are also shown possible. Therefore although the project cannot be shown in full working order, it is shown that the design is capable of producing a desired result. The problem is just an unknown error in registering to the network.

USERS MANUAL/INSTRUCTION MANUAL

6.1 How to install product

In order to use our system, the user will need to purchase the appropriate number of locks and motors for their doors and windows in their home. Each of these devices will have to be individually installed. The new lock would replace any existing lock and would be installed in the door frame in a typical manner. The motor would be compatible and efficient with casement windows but the product could be modified for other windows. If a casement window were to be used, the motor would be installed around the casement opener. After the motor and lock are installed, it is necessary to determine a central hub for the monitoring system and install the appropriate wiring necessary to connect the external devices to the board. The users would be provided with these cables that would interface the two parts. The opposite end of the cable of each of the devices would respectively connect to the screw terminals on the board that are clearly labeled. The system is then plugged into a regular wall socket using the power brick provided.

6.2 How to setup product

Once the system is powered, the system will require minimal setup. Upon setting up the home monitoring system, the user would first receive a SMS text message asking them to set a pass code for their system. The system also allows users to set two cell phone numbers as default numbers.

Once this task is successfully completed, they are ready to utilize the system. The system will allow access to up to two cellular phone numbers which were the two default numbers. The will be able to use the system without having to enter a pass code. However, if an unrecognized number sends a SMS text to the system, the system will send a text message back requesting the pass code.

Prior to using the system each time, a 4 Character Password will be requested from the user. This will be the same pass code that was set by them initially at setup. If the next command is accepted, then the pass code has been accepted by the system. However, if the commands are not accepted, the pass code is incorrect.

The following case-sensitive commands are issued by the user in order for the system to perform any actions:
	COMMAND
	RESPONSE
	ACTION PERFORMED

	DOOR UNLOCK
	DONE
	Unlocks door

	OPEN WINDOW
	DONE
	Opens window

	CLOSE WINDOW
	DONE
	Closes window

	NUMBER ONE <10 digit number>
	DONE
	Allows user to set/change cell phone access to system

	NUMBER TWO <10 digit number>
	DONE
	Allows user to set/change cell phone access to system

6.3 How to determine if the product is working

The functionality of the GSM modem can be detected by observing the green LED on the system. The LED will typically flash every one second when it is not on a network or searching for one. However, the LED will begin to flash once every three seconds when it has connected to a network. This change would indicate that the system is in fact ready to send and receive text messages. Another one of the main means to determine that the system is working is by sending it a text message. If the system is functioning properly, it will appropriately respond to the user's command and send a confirmation message back to them when the requested command has been completed. This will enable the user to determine the responsiveness of the system.

6.4 How to troubleshoot the product
One of the most common errors that may occur is trouble connecting to a network. Typically it takes about 30 seconds for the GSM to register to the network, however with unanticipated network problems it could take longer. This would be identifiable by observing the status LED that is connected to the GSM. It is important to check this first. If possible, it would be advisable to move the system to an area with better reception.

If this solution does not work, the next best solution would entail pressing the reset button that is located on the system. Doing this will restart the program that is running and thereby hopefully clear and glitches that may be present.
CONCLUSIONS

5.1 Final Evaluation

This project is an attempt to create a system for monitoring and controlling specific parts of a home by way of a cellular telephone. The system provides an avenue to increase the convenience of the consumer through its simplicity and accessibility. It also provides users with an innovative means to secure their home. This is done by taking commands or queries from a cellular telephone, interpreting them, and processing them.

Although the outcome of the project was not as successful as we had anticipated, we are certain that our design would be feasible. During the course of our project, we observed the behavior of the GM862. When it was working properly, it was receptive to the commands sent from the microcontroller and therein enabling the activation of the appropriate mechanism. However, our project faced its most major obstacle when the GM862 was continually unable to connect to a network. If this solution were to be resolved, we would then have complete functionality of our system as planned in our initial design.

5.2 Future Enhancements

The project has the potential to be expanded one it is properly developed. In the future, the system can be made more user friendly by improving the interface through the use of phone applications or other means. The lock is not a standard lock for a normal house. If this were to be made commercially available door lock that is more easily applied in households. It would have to be a smaller locking system that can somehow be set to be open for long periods of time and could be installed in a standard door. It would also be beneficial for the lock to be able to be unlocked manually in addition to using the texting system to unlock the door.

[image: image9.png]© Original Artist

“George, this new home security system you bought.
how much did it cost?”

APPENDICES
APPENDIX 1 : Hardware Schematic

APPENDIX 2: Board

[image: image10.png][]

P

oTor:

age Feqitor

oo

Rt

12 3 RERS

3

2 vmest

{17

i

R

F

o[0) P s
lolalalo] o
pa] H
| 3 0000
H ! 0000
% v,
o o—o—o
-
6 —
&2 4] —— ¢
£) . o
= ol o [
g H
R
ellular Sentinels E
Motre Dame § \
08 3
= p— °

254

luce

.

APPENDIX 3 : Complete Software Listings

1. SourceBoost IDE: Used to test and program microcontroller
2. Eagle Layout Editor 4.16: Created schematics and board
3. Hyperterminal: Communicated serially with GM862 and Microcontroller
APPENDIX 4: Relevant parts and component data sheets

· Microcontroller: PIC18F2320

http://ww1.microchip.com/downloads/en/devicedoc/39599c.pdf

· GM862 Cellular Quad Band Module

http://www.gm862.com/en/products/gsm-gprs.php?p_id=12&p_ac=show&p=4

· GM862 Evaluation Board- 50 Pin

http://www.sparkfun.com/commerce/product_info.php?products_id=277

· Maxim RS232 Driver
http://datasheets.maxim-ic.com/en/ds/MAX220-MAX249.pdf
APPENDIX 5: Final Code

#include <system.h>

#pragma DATA _CONFIG1H, _INTIO1_OSC_1H

#pragma DATA _CONFIG2H, _WDT_OFF_2H

#pragma DATA _CONFIG3H, _MCLRE_ON_3H

#pragma DATA _CONFIG4L, _LVP_ON_4L

// Using the PIC18LF2320

char MESSAGE[144];

// Global variables will be capitalized from now on

char NUMBER_ONE[10];

// Stores the first saved number

char NUMBER_TWO[10];

// Stores the second saved number

char PASSWORD[3];

// Stores the 4 character passcode

volatile bit cren@RCSTA.4;
// Used to clear the over run error

bool SECURITY;

// Security Flag

void BUFFERinit()

// Initialiaes the Message Buffer, don't want anything left over from dirty memory in there

{

char uncount = 0;

while(uncount <= 143)

{

MESSAGE[uncount++] = NULL;

}

return;

}

void NUMBERinit()

// Initializes the number buffer, One number is pre stored

{

NUMBER_ONE[0] = '2';

NUMBER_ONE[1] = '1';

NUMBER_ONE[2] = '7';

NUMBER_ONE[3] = '9';

NUMBER_ONE[4] = '7';

NUMBER_ONE[5] = '1';

NUMBER_ONE[6] = '0';

NUMBER_ONE[7] = '5';

NUMBER_ONE[8] = '4';

NUMBER_ONE[9] = '6';

return;

}

void PASSWORDinit()

// Initializes the passcode buffer, passcode is pre stored

{

PASSWORD[0] = 'P';

PASSWORD[1] = 'A';

PASSWORD[2] = 'S';

PASSWORD[3] = 'S';

return;

}

void USARTinit()

{

 txsta = 0b00100000; // txsta<5> is txenable, txsta<2> is brgh

 // We will want brgh to be 0 because it is for low speed

 rcsta = 0b10010000; // serialportenable bit rcsta<7>

 trisc = 0b10000000; // trisc<6 & 7> trisc 6 = 0, trisc 7 = 1

 spbrg = 51; // 2400, Using this from now on, more time to gather each character

 // hopefully less error prone, and it helps to allow flag time

 intcon.7 = 1;

 intcon.6 = 1;

 pie1.4 = 1;

 pie1.5 = 0;

 return;

}

void putc(char value)

// General put c

{

 volatile bit txif@PIR1.4;

 while(!txif);

 txreg = value;

 return;

}

void put_ctrl_z()

// Special put c, it putc control-Z for use with sending text messages

{

 txreg = 0x1A;

 return;

}

void putc_special(char value)
// Artifact from testing

{

 volatile bit txif@PIR1.4;

 txreg = rcreg;

 return;

}

char getc(void)

// General get c, used to light LEDs connected to c3

{

 volatile bit rcif@PIR1.5;

 char value;

 //latc.3 = 0;

 while(!rcif);

 value = rcreg;

 //latc.3 = 1;

 return value;

}

void printf(const char* text)

// Print a string

{

 char i = 0;

 while(text[i] != NULL)

 {

 putc(text[i++]);

 }

 return;

}

void GM_send()

// Send a text message to a number from which a message was just received

{

 printf("\r\n");

 printf("\r\n");

 delay_s(5);

 printf("AT+CMGS=+1");

 putc(MESSAGE[24]);

 putc(MESSAGE[25]);

 putc(MESSAGE[26]);

 putc(MESSAGE[27]);

 putc(MESSAGE[28]);

 putc(MESSAGE[29]);

 putc(MESSAGE[30]);

 putc(MESSAGE[31]);

 putc(MESSAGE[32]);

 putc(MESSAGE[33]);

 printf("\r\n");

 delay_s(5);

 printf("DONE");//text to send

 delay_s(5);

 put_ctrl_z();

 delay_s(5);

 printf("\r\n");

 delay_s(30);

 return;

}

// NOTE: the I/O pins used here are also used for debugging, take them out of code before calling either of these functions

void window_open()

{

 latc.1 = 1; // direction set to open

 delay_s(3); // reduce arcing

 latc.2 = 1; // motor on

 delay_s(30); // time motor takes to open window

 latc.2 = 0; // motor off

 latc.1 = 0; // default direction set to close

 printf("\r\n");

 printf("\r\n");

 printf("WINDOW OPEN!\r\n");

 return;

}

void window_close()

{

 latc.1 = 0; // direction set to close

 delay_s(3); // reduce arcing

 latc.2 = 1; // motor on

 delay_s(30); // time motor takes to close window

 latc.2 = 0; // motor off

 latc.1 = 0; // default direction set to close

 printf("\r\n");

 printf("\r\n");

 printf("WINDOW CLOSED!\r\n");

 return;

}

void lock_con()

{

 latc.0 = 1; // unlock door

 printf("\r\n");

 printf("\r\n");

 printf("DOOR UNLOCKED!\r\n");

 delay_s(5); // time unlocked

 latc.0 = 0; // lock door again

 printf("\r\n");

 printf("\r\n");

 printf("DOOR LOCKED!\r\n");

 return;

}

void GM_debug()

{

printf("\r\n");

char count = 0;

/*

printf("?");

putc(MESSAGE[61]);

printf("?");

printf("?");

putc(MESSAGE[62]);

// For debugging purposes

printf("?");

printf("?");

putc(MESSAGE[63]);

printf("?");

printf("\r\n");

 printf("\r\n");

 */

while(MESSAGE[count] != NULL)

// For demonstration purposes

{

putc(MESSAGE[count++]);

}

return;

}

void GM_receive2()

{

 //printf("AT+CMGR=2\r\n"); //Reads message from memory space 2 on the SIM card

 printf("\r\n");

 printf("\r\n");

 BUFFERinit();

 char count = 0;

 char uncount = 0;

 bool stop_flag = 0;

 cren = 0;

 delay_s(5);

 cren = 1;

 printf("AT+CMGR=2\r\n");
// Reads from index 2

 while(!stop_flag)

 {

// All messages end with ok, this is result code default, very useful

MESSAGE[count] = getc();

if(MESSAGE[count] == 'K')

{

stop_flag = 1;

}

count++;

}

 //latc.3 = rcsta.1;

 delay_s(5);

 //latc.3 = rcsta.1;

 //latc.4 = 0;

 GM_debug();

 // all of the following is how to string compare parts of messages

 if(MESSAGE[62] == 'N' & MESSAGE[63] == 'U' & MESSAGE[64] == 'M' & MESSAGE[65] == 'B' & MESSAGE[66] == 'E' & MESSAGE[67] == 'R' & MESSAGE[68] == ' ' & MESSAGE[69] == 'O' & MESSAGE[70] == 'N' & MESSAGE[71] == 'E') // if message says add phonebook 1

 {

if(SECURITY)

{

NUMBER_ONE[0] = MESSAGE[73];

NUMBER_ONE[1] = MESSAGE[74];

NUMBER_ONE[2] = MESSAGE[75];

NUMBER_ONE[3] = MESSAGE[76];

NUMBER_ONE[4] = MESSAGE[77];

NUMBER_ONE[5] = MESSAGE[78];

NUMBER_ONE[6] = MESSAGE[79];

NUMBER_ONE[7] = MESSAGE[80];

NUMBER_ONE[8] = MESSAGE[81];

NUMBER_ONE[9] = MESSAGE[82];

GM_send();

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

}

else

{

delay_s(3);

}

 }

 if(MESSAGE[62] == 'N' & MESSAGE[63] == 'U' & MESSAGE[64] == 'M' & MESSAGE[65] == 'B' & MESSAGE[66] == 'E' & MESSAGE[67] == 'R' & MESSAGE[68] == ' ' & MESSAGE[69] == 'T' & MESSAGE[70] == 'W' & MESSAGE[71] == 'O') // if message says add phonebook 2

 {

if(SECURITY)

{

NUMBER_TWO[0] = MESSAGE[73];

NUMBER_TWO[1] = MESSAGE[74];

NUMBER_TWO[2] = MESSAGE[75];

NUMBER_TWO[3] = MESSAGE[76];

NUMBER_TWO[4] = MESSAGE[77];

NUMBER_TWO[5] = MESSAGE[78];

NUMBER_TWO[6] = MESSAGE[79];

NUMBER_TWO[7] = MESSAGE[80];

NUMBER_TWO[8] = MESSAGE[81];

NUMBER_TWO[9] = MESSAGE[82];

GM_send();

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

}

else

{

delay_s(3);

}

 }

 if(MESSAGE[62] == PASSWORD[0] & MESSAGE[63] == PASSWORD[1] & MESSAGE[64] == PASSWORD[2] & MESSAGE[65] == PASSWORD[3]) // if message says add phonebook 2

 {

if(SECURITY)

{

PASSWORD[0] = MESSAGE[67];

PASSWORD[1] = MESSAGE[68];

PASSWORD[2] = MESSAGE[69];

PASSWORD[3] = MESSAGE[70];

GM_send();

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

}

else

{

delay_s(3);

}

 }

 // What to do if certain messages are received

 else if(MESSAGE[62] == 'D' & MESSAGE[63] == 'O' & MESSAGE[64] == 'O' & MESSAGE[65] == 'R' & MESSAGE[66] == ' ' & MESSAGE[67] == 'U' & MESSAGE[68] == 'N' & MESSAGE[69] == 'L' & MESSAGE[70] == 'O' & MESSAGE[71] == 'C' & MESSAGE[72] == 'K') // if message says unlock door

 {

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

lock_con();

GM_send();

 }

 else if(MESSAGE[62] == 'O' & MESSAGE[63] == 'P' & MESSAGE[64] == 'E' & MESSAGE[65] == 'N' & MESSAGE[66] == ' ' & MESSAGE[67] == 'W' & MESSAGE[68] == 'I' & MESSAGE[69] == 'N' & MESSAGE[70] == 'D' & MESSAGE[71] == 'O' & MESSAGE[72] == 'W') // if message says open window

 {

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

window_open();

GM_send();

 }

 else if(MESSAGE[62] == 'C' & MESSAGE[63] == 'L' & MESSAGE[64] == 'O' & MESSAGE[65] == 'S' & MESSAGE[66] == 'E' & MESSAGE[67] == ' ' & MESSAGE[68] == 'W' & MESSAGE[69] == 'I' & MESSAGE[70] == 'N' & MESSAGE[71] == 'D' & MESSAGE[72] == 'O' & MESSAGE[73] == 'W') // if message says close window

 {

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

window_close();

GM_send();

 }

 // Clear message buffer if nothing was accepted

 else

 {

while(uncount <= 143)

{

MESSAGE[uncount++] = NULL;

}

 }

 // If we were working continuously, then we would neeed to keep indexes 1 and 2 open all the time

 //printf("AT+CMGD=2\r\n");//Delete the first space in memory so as to prepare for the next message

 delay_s(5);

 return;

}

// Routine if the number is stored and recognized by system

void secure()

{

if(MESSAGE[62] == PASSWORD[0] & MESSAGE[63] == PASSWORD[1] & MESSAGE[64] == PASSWORD[2] & MESSAGE[65] == PASSWORD[3])
 // if message says the password

{

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

GM_receive2();

}

else if(MESSAGE[62] == 'D' & MESSAGE[63] == 'O' & MESSAGE[64] == 'O' & MESSAGE[65] == 'R' & MESSAGE[66] == ' ' & MESSAGE[67] == 'U' & MESSAGE[68] == 'N' & MESSAGE[69] == 'L' & MESSAGE[70] == 'O' & MESSAGE[71] == 'C' & MESSAGE[72] == 'K') // if message says unlock door

{

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

lock_con();

GM_send();

}

else if(MESSAGE[62] == 'O' & MESSAGE[63] == 'P' & MESSAGE[64] == 'E' & MESSAGE[65] == 'N' & MESSAGE[66] == ' ' & MESSAGE[67] == 'W' & MESSAGE[68] == 'I' & MESSAGE[69] == 'N' & MESSAGE[70] == 'D' & MESSAGE[71] == 'O' & MESSAGE[72] == 'W') // if message says open window

{

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

window_open();

GM_send();

}

else if(MESSAGE[62] == 'C' & MESSAGE[63] == 'L' & MESSAGE[64] == 'O' & MESSAGE[65] == 'S' & MESSAGE[66] == 'E' & MESSAGE[67] == ' ' & MESSAGE[68] == 'W' & MESSAGE[69] == 'I' & MESSAGE[70] == 'N' & MESSAGE[71] == 'D' & MESSAGE[72] == 'O' & MESSAGE[73] == 'W') // if message says close window

{

 latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

window_close();

GM_send();

}

else

{

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

delay_s(3);

}

// if connected to network, we would need to keep the

//printf("AT+CMGD=1\r\n");//Delete the first space in memory so as to prepare for the next message

return;

}

// Routine for Unsecure, unrecognized numbers, Is it the passcode

void unsecure()

{

if(MESSAGE[62] == PASSWORD[0] & MESSAGE[63] == PASSWORD[1] & MESSAGE[64] == PASSWORD[2] & MESSAGE[65] == PASSWORD[3])
 // if message says the password

{

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

GM_receive2();

}

else

{

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

delay_s(3);

}

//printf("AT+CMGD=1\r\n");//Delete the first space in memory so as to prepare for the next message

return;

}

void check_number()

// Checking to see if a number is recognized

{

if(MESSAGE[24] == NUMBER_ONE[0] & MESSAGE[25] == NUMBER_ONE[1] & MESSAGE[26] == NUMBER_ONE[2] & MESSAGE[27] == NUMBER_ONE[3] & MESSAGE[28] == NUMBER_ONE[4] & MESSAGE[29] == NUMBER_ONE[5] & MESSAGE[30] == NUMBER_ONE[6] & MESSAGE[31] == NUMBER_ONE[7] & MESSAGE[32] == NUMBER_ONE[8] & MESSAGE[33] == NUMBER_ONE[9]) //still just a filler, need sim working to identify this

{

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

secure();

}

else if(MESSAGE[24] == NUMBER_TWO[0] & MESSAGE[25] == NUMBER_TWO[1] & MESSAGE[26] == NUMBER_TWO[2] & MESSAGE[27] == NUMBER_TWO[3] & MESSAGE[28] == NUMBER_TWO[4] & MESSAGE[29] == NUMBER_TWO[5] & MESSAGE[30] == NUMBER_TWO[6] & MESSAGE[31] == NUMBER_TWO[7] & MESSAGE[32] == NUMBER_TWO[8] & MESSAGE[33] == NUMBER_TWO[9])

{

secure();

}

else

{

latc.3 = 0;

delay_s(5);

latc.3 = 1;

delay_s(5);

unsecure();

}

return;

}

void mc_on_off()

{

 trisa.0 = 0; // MC pin for ON/OFF on the GSM modem is output

 delay_s(1);

 lata.0 = 1;

 delay_s(3);

 lata.0 = 0;

 return;

}

void GM_init()

{

 printf("ATE0\r\n");//turns off command echo

 delay_s(3);

 printf("AT+COPS=0\r\n"); // start network search

 delay_s(3);

 //printf("AT+CNUM\r\n");

 //delay_s(3);

 printf("AT+CFUN=1\r\n");//sets the gm862 so it does not go into low power mode

 delay_s(3);

 printf("AT#SELINT=2\r\n");//sets instruction set

 delay_s(3);

 printf("AT+CMGF=1\r\n");//sets the gsm to text mode

 delay_s(3);

 printf("AT+CPMS=\"SM\"\r\n"); //sets to SIM memory to read messages

 delay_s(3);

 printf("AT#BND=3\r\n");

 delay_s(3);

 printf("AT#AUTOBND=1\r\n");

 delay_s(10);

 return;

}

void GM_receive()

{

 //printf("AT+CMGR=1\r\n"); //Reads message from memory space 1 on the SIM card

 BUFFERinit();

 char count = 0;

 char uncount = 0;

 bool stop_flag = 0;

 cren = 0;

// Clear overrun error

 delay_s(5);

 cren = 1;

 printf("AT+CMGR=1\r\n");

 while(!stop_flag)

 {

MESSAGE[count] = getc();

if(MESSAGE[count] == 'K')

{

stop_flag = 1;

}

count++;

}

 //latc.3 = rcsta.1;

 delay_s(5);

 //latc.3 = rcsta.1;

 GM_debug();

 if(MESSAGE[12] == 'R' & MESSAGE[13] == 'E' & MESSAGE[14] == 'C' & MESSAGE[15] == ' ' & MESSAGE[16] == 'R' & MESSAGE[17] == 'E' & MESSAGE[18] == 'A' & MESSAGE[19] == 'D') // check if read

 {

latc.4 = 0;

delay_s(5);

latc.4 = 1;

delay_s(5);

check_number();

}

 else

 {

while(uncount <= 143)

{

MESSAGE[uncount++] = NULL;

}

}

 return;

}

void main()

{

 osctune = 0b00000011;//Beginning of initialization sequence

 osccon = 0b01110110;

 USARTinit();

 NUMBERinit();

 PASSWORDinit();

 latc.3 = 1;

 latc.4 = 1;

 mc_on_off();

 delay_s(5);

 //window_open();

 //delay_s(5);

 //window_close();

 GM_init();//End of initialization sequence

 GM_receive();

 while(1){

delay_s(5);

}

 return;

}

Cellular Connection

SMS Component / GSM Modem

Lock Mechanism

Window Mechanism

Microcontroller

Information Processing / Control Center

Cell Phone

PAGE
3

